The Hedgehog Signaling Pathway: Where Did It Come From?
نویسندگان
چکیده
Complex body plans require sophisticated cell–cell signaling pathways. How these pathways evolved is often not very well understood. Here, we argue that the Hedgehog (Hh) signaling pathway may have arisen from systems that were originally designed for the transport and homeostasis of certain bacterial sterol analogs—the hopanoids. We propose a possible scenario for the evolution of Hh signaling and discuss how evolutionary considerations can shed light on the mysterious communication between the membrane-bound Hh transducers Patched (Ptc) and Smoothened (Smo). The importance of the Hh signaling pathway has long been documented, even in Greek mythology; the tale of the one-eyed Cyclops was likely inspired by rare birth defects related to reduced Hh signaling [1,2]. Whereas reduced Hh signaling can cause these and other developmental defects, inappropriate activation of Hh signaling contributes to certain forms of cancer, including basal cell carcinoma, the most commonly occurring form of skin cancer [3]. Both effects reflect the essential role of Hh in the control of patterning and growth during development and in the adult animal (for more detailed reviews, see [4–6]). The current model for the production, transport, and transmission of the Hh signal is summarized in Figure 1. Two important components acting at the cell membrane are Ptc, which is the likely receptor for Hh, and the seven-pass transmembrane protein Smo, which acts downstream of Ptc. In the absence of Hh, Ptc blocks Smo activity. How this repression is achieved, and subsequently overcome by the Hh ligand, remains a mystery. One key to solving it may lie in understanding the multiple connections of the Hh pathway to lipid metabolism (reviewed in [7]). In addition, we argue that evolutionary considerations can identify a possible scenario for the origin of Hh signaling. To begin addressing both aspects, we start with a detailed look at Ptc and Smo.
منابع مشابه
The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملTargeting hedgehog in hematologic malignancy.
The Hedgehog pathway is a critical mediator of embryonic patterning and organ development, including hematopoiesis. It influences stem cell fate, differentiation, proliferation, and apoptosis in responsive tissues. In adult organisms, hedgehog pathway activity is required for aspects of tissue maintenance and regeneration; however, there is increasing awareness that abnormal hedgehog signaling ...
متن کاملThe Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.
Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caus...
متن کاملInvestigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach
Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2009